Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(37): e2205459, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36120918

RESUMO

Metal halide perovskite based materials have emerged over the past few decades as remarkable solution-processable optoelectronic materials with many intriguing properties and potential applications. These emerging materials have recently been considered for their promise in low-energy memory and information processing applications. In particular, their large optical cross-sections, high photoconductance contrast, large carrier-diffusion lengths, and mixed electronic/ionic transport mechanisms are attractive for enabling memory elements and neuromorphic devices that are written and/or read in the optical domain. Here, recent progress toward memory and neuromorphic functionality in metal halide perovskite materials and devices where photons are used as a critical degree of freedom for switching, memory, and neuromorphic functionality is reviewed.

2.
Adv Mater ; 31(43): e1807376, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31441161

RESUMO

An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halide perovskites and ferroelectric perovskites) for future multifunctional energy conversion and storage devices is provided. Often, these are considered entirely different branches of research; however, considering them simultaneously and holistically can provide several new opportunities. Recent advancements have highlighted the potential of hybrid perovskites for high-efficiency solar cells. The intrinsic polar properties of these materials, including the potential for ferroelectricity, provide additional possibilities for simultaneously exploiting several energy conversion mechanisms such as the piezoelectric, pyroelectric, and thermoelectric effect and electrical energy storage. The presence of these phenomena can support the performance of perovskite solar cells. The energy conversion using these effects (piezo-, pyro-, and thermoelectric effect) can also be enhanced by a change in the light intensity. Thus, there lies a range of possibilities for tuning the structural, electronic, optical, and magnetic properties of perovskites to simultaneously harvest energy using more than one mechanism to realize an improved efficiency. This requires a basic understanding of concepts, mechanisms, corresponding material properties, and the underlying physics involved with these effects.

3.
Nanoscale Adv ; 1(1): 403-413, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132473

RESUMO

Nanocrystalline Ce-substituted yttrium iron garnet (YIG) powders of different compositions, Y3-x Ce x Fe5O12 (0 ≤ x ≤ 2.0), were synthesized by a combination of sol-gel auto-combustion and solid-state synthesis techniques. The as-obtained powder samples were sintered at 1150 °C for 10 h. The garnet structure formation is confirmed by the X-ray diffraction pattern, which shows that the calculated lattice parameter increased for x = 1.0 and shows a decreasing trend for x ≥ 1.0 with the addition of cerium ions. The lattice parameter increased from 12.38 Å to 12.41 Å for x ≤ 1.0 whereas it decreased from 12.412 Å to 12.405 Å with the cerium composition for x > 1.0. The average particle size determined by high resolution transmission electron microscopy is in the range of 50 to 90 nm and found to increase with the substitution of cerium ions in YIG. The room temperature magnetic parameters such as saturation magnetization, coercivity and remanence magnetization are greatly affected by the substitution of cerium ions. The values of saturation magnetization decrease from 25.5 to 15 emu g-1 whereas coercivity increases from 1 to 28 Oe with the substitution of cerium ions. The pure YIG sample shows polycrystalline nature that changed towards a single-crystal structure leading to a preferred-(100) orientation with the Ce substitution. The change from a ring to a spotty pattern observed in SAED confirmed the crystalline phase transformation and is well supported by HRTEM and magnetic measurements. The behavior of magnetic and electrical properties is well supported by the poly- and single-crystalline nature of YIG and Ce-YIG, respectively. The crystal structure transformation in YIG brought about by Ce substitution could unveil enormous opportunities in the preparation of single-crystal materials from their polycrystalline counterparts.

4.
Adv Mater ; 30(43): e1803821, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30589464

RESUMO

Photo-ferroelectric single crystals and highly oriented thin-films have been extensively researched recently, with increasing photovoltaic energy conversion efficiency (from 0.5% up to 8.1%) achieved. Rare attention has been paid to polycrystalline ceramics, potentially due to their negligible efficiency. However, ceramics offer simple and cost-effective fabrication routes and stable performance compared to single crystals and thin-films. Therefore, a significantly increased efficiency of photo-ferroelectric ceramics contributes toward widened application areas for photo-ferroelectrics, e.g., multisource energy harvesting. Here, all-optical domain control under illumination, visible-range light-tunable photodiode/transistor phenomena and optoelectrically tunable photovoltaic properties are demonstrated, using a recently discovered photo-ferroelectric ceramic (K0.49Na0.49Ba0.02)(Nb0.99Ni0.01)O2.995. For this monolithic material, tuning of the electric conductivity independent of the ferroelectricity is achieved, which previously could only be achieved in organic phase-separate blends. Guided by these discoveries, a boost of five orders of magnitude in the photovoltaic output power and energy conversion efficiency is achieved via optical and electrical control of ferroelectric domains in an energy-harvesting circuit. These results provide a potentially supplementary approach and knowledge for other photo-ferroelectrics to further boost their efficiency for energy-efficient circuitry designs and enable the development of a wide range of optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...